Category: industry


5 Energy-Saving Tips For Manufacturers

May 30, 2018

industry

Comments Off on 5 Energy-Saving Tips For Manufacturers


Are you worried about the current oil prices? If so, you should stop worrying as the price won’t last forever. Actually, OPEC has almost no influence on electricity or natural gas. The fact of the matter is that the old coal-based power plants increased electricity prices in 2016. However, the problem is that energy efficiency is really important for you should you want to stay ahead of the competition. If you are a plant manager and you want to save energy, we suggest that you follow the tips given below.

Process Heating

The US Department of Energy suggests that plant managers can cut down on the heating costs through the implementation of some energy-saving measures. As a matter of fact, process heating includes 30% of the energy consumed in this sector. Therefore, if you save energy in this area, you can make a significant impact.

Moreover, you can monitor and control your air-to-fuel ratio and exhaust gases in order to save a lot of energy. But if your plant requires lots of hot water, it’s a good idea to use a solar-water heating plant to preheat the process water. This is another great way of saving a lot of money.

Motors and Equipment

Machine drives accounts for over 22% of power consumption in the manufacturing sector. If you want to cut down on your operating costs, we suggest that you analyze the system and shaft losses. In addition, you can also consider upgrading to a system that is more efficient.

At times, you may have to replace the equipment to achieve your targets. But you don’t have to spend a huge sum for each upgrade. As a matter of fact, you can hone the mechanical performance of the plant through the alteration of the operational or maintenance procedures.

Lighting

Typically, building-performance experts consider lighting as the main source of energy consumption. For energy saving, you can opt for fluorescent bulbs, fixtures, LED tube lights, and skylights, just to name a few. However, you don’t have to replace all of your lighting systems in order to save energy.

Utilities

You may not want to overlook utilities as far as saving energy is concerned. What you need to do is review your usage plans and then get in touch with the service provider to find out if they can provide alternative procurement or other option that can help you save money.

Actually, some utilities offer attractive incentives for the installation of energy-saving improvements. It’s also a good idea to contact the competitors. You can also negotiate with them to get the best deal.

Employees

For energy efficiency, employee behavior also matters. You may want to let your employees know your goals and progress. Don’t forget to appreciate them for playing a role in the achievement of your goals. You will see that they have great insights. As a matter of fact, studies show that upgrades for energy efficiency help workers become more productive.

Long story short, when you are planning an energy-saving program, you may want to look for opportunities that can help you reduce cost. Next, as the operating costs come down, you can invest in an energy saving infrastructure like a solar energy system. Hopefully, the tips given above will help you save on energy costs.

Hardness Tester – A Boon Or A Bane For The Construction Industry

May 30, 2018

industry

Comments Off on Hardness Tester – A Boon Or A Bane For The Construction Industry


If you are an engineer or work in any metal industry, probably you are aware of the instrument Hardness Tester. It is a device that helps to measure the indentation rigidity in the metal. It is very much helpful in determining the measure of deformation that majorly happens whenever the metal or metallic substance is penetrated with a certain category of the indenter. It is a way better than its alternative including Scleroscope, Vickers, and Brinell, which was previously used for performing the same test.

All these instruments have some disadvantages like if we talk about the Scleroscope, so, it was hard to use, the second one that is Vickers, it takes too long to respond and the final one Brinell had too large of indents than they actually required in the application. Therefore, this amazing instrument was invented to eliminate all the above disadvantages. Nowadays, this hardness tester has great demand in the market as it helps to measure the hardness of the material the way easier than ever. You are allowed to measure the hardness of any size and shape of the material. Moreover, it is available in the portable design, which means you can use it at more than one site. It is a proven way to measure the quality of the metal and metallic products or other materials.

It delivers accurate results in a very short span. To determine whether the metal is appropriate for construction use is or not, you need this instrument. It can be used in different applications and are very easy to use. Additionally, this instrument is filled with a number of benefits that make it ideal to use in construction industry. So, you should eliminate myth from your mind that it is a bane or investing in it is a waste of money because it is not. It is a perfect instrument to invest, so, you can easily measure the hardness of the material and get the accurate result about the quality and strength of the material.

It makes the measuring process a lot easier for the first time users. So, if your work activities include the testing the hardness of different objects, so, this instrument is undoubtedly a boon for you. It has great demand in a number of industries, where you need to control the quality of the material, before sending it further for any use. What are you waiting for? Go and get the instrument now for the accurate results.

3D Printing: The Materials Used for 3D Printing

May 30, 2018

industry

Comments Off on 3D Printing: The Materials Used for 3D Printing


3D printing was developed back in the early 80s but it has seen much growth since the past 10 years. It has now become one of the biggest growth areas in the tech industry and is revolutionising manufacturing covering every industry possible. The 3D printing business is now multi-billion dollar industry and is likely to continue growing at an exponential rate.

3D printing is quite a simple process conceptually, the printers work by printing the chosen material in layers on top of each other, with each layer setting prior to the next pass of the printer.

3D printers have been used to print all sorts of materials from cheap and normal materials to things you would expect to read in a sci-fi book.

For the consumer market, plastics are used exclusively as the materials are cheap to buy, but more importantly, the technology required to print plastic is relatively simple and low cost.

Low-cost 3D printers using plastic tend to use Fused filament fabrication (FFF). This is basically a process where a cord of plastic is heated up to become pliable then fed through the machine layering the plastic. The machines generally use one of the following plastics

PLA (Polylactic Acid) – PLA is probably the easiest material to work with when you first start 3D printing. It is an environmentally friendly material that is very safe to use, as it is a biodegradable thermoplastic that has been derived from renewable resources such as corn starch and sugar canes. This is a similar plastic that is used in compostable bags which safely bio degrade compared to more traditional plastics used in Poly Bags.

ABS (Acrylonitrile butadiene styrene) – ABS is considered to be the second easiest material to work with when you start 3D printing. It’s very safe and strong and widely used for things like car bumpers, and Lego (the kid’s toy).

PVA (Polyvinyl Alcohol Plastic) – PVA plastic which is quite different to PVA Glue (please don’t try putting PVA Glue into your 3D Printer, it definitely won’t work). The popular MakerBot Replicator 2 printers use PVA plastic.

Plastics are used extensively on all levels from consumer to businesses prototyping new products. However, in the business market, there is a huge demand for metal 3D printing. Some printers can use powdered material that is then heated to create a solid. This method is typically Direct Metal Laser Sintering (DMLS) and this particular technique is why we don’t see consumer metal 3D printing. DMLS requires a huge amount of heat and giant expensive printers to sinter the material together, and while 3D printing a metal object might be expensive compared to mass production, it is incredibly cost efficient for complex and expensive projects. A good example of DMLS based 3D printing is GE Aviation using it to produce 35,000 fuel injectors for its LEAP jet engine.

Using boring materials such as metal is almost archaic in the world of 3D printing now; some companies now do 3D bioprinting which is the process of creating cell patterns in a confined space using 3D printing technologies, where cell function and viability are preserved within the printed construct. These 3D bioprinters have the capacity to print skin tissue, heart tissue, and blood vessels among other basic tissues that could be suitable for surgical therapy and transplantation.

3 Keys to a Successful Preventive Maintenance Program

May 30, 2018

industry

Comments Off on 3 Keys to a Successful Preventive Maintenance Program


Preventive maintenance planning and practices influence most major maintenance department activities in a manufacturing environment. Here are some examples of this.

Equipment downtime is largely affected by preventive maintenance or the lack there of.
Repair work orders are subjected to the influences of the preventive maintenance program.
Purchasing and inventory are affected by preventive maintenance for routine replacement of expendable spares as well as repair parts required for unexpected downtime.

As evidenced by the points above, preventive maintenance should be “first base” for any maintenance department. Unfortunately sometimes routine preventive maintenance activities often do not get the attention or credit they are due. This is a mistake. So what are the keys to a successful preventive maintenance program?

1. Careful Planning of the Preventive Maintenance Program

Planning a preventive maintenance program involves the following:

Determine tasks and intervals needed to maintain the equipment.
Ensure that the appropriate resources are in place.
Schedule maintenance personnel for maximum preventive maintenance wrench time.
Understand how scheduled equipment downtime and maintenance personnel scheduling interface.
Manage spares effectively.
Select a scheduling and accountability system (preventive maintenance software, CMMS software or equivalent)

Determine Maintenance Tasks and Intervals

A good preventive maintenance (PM) task list contains the following components:

The equipment item.
The task(s).
The person the task is assigned to.
A task interval.
A start date and due date.
Optional: Detailed instructions and pictures if needed.
Optional: Task completion sequence.

Begin with your equipment list. Next gather appropriate tasks for preventive maintenance task lists from OEM manuals or online manuals when possible. This is a good place to start, especially with newer equipment. In some cases, the equipment warranty is dependent upon following the OEM recommendations. Another source of tasks is the maintenance manager’s experience and intuition. Yet another source is branch locations running similar equipment.

When developing a task list, consider the reusability of the task descriptions. Reusability refers to using the same task description on potentially multiple equipment items. The benefit is that there are fewer tasks, no duplicate task descriptions and better reporting and analysis of PMs. Consider these examples:

REUSABLE task description: Lubricate Roller Chain(s)

NOT REUSABLE: Lubricate Roller Chain(s) on Conveyor #1

In the first example this task, Lubricate Roller Chain(s), is appropriate for any equipment with a roller chain. In the second example, Lubricate Roller Chain on Conveyor #1, is only appropriate on the Conveyor #1 PM task list. Imagine how cumbersome your preventive maintenance software management efforts become if you are not using reusable tasks. Another example that may cause problems later is naming conventions such as 30 Day PMs or Weekly Tasks. This creates unneeded redundancy, as the interval (30 in this case) is included in the PM record already. Additionally there is no task description here that refers to the actual work performed.

How do you create reusable tasks? Begin with the most generic tasks you can think of and create these first. Examples could be Inspect, Clean, Lubricate, etc. After these task descriptions have been created, go to the next step and create tasks that are somewhat more specific. Here are some examples: Check Wiring, Replace Lubricant, Lube Chains. Continue with increasingly more specific tasks always trying to avoid including the equipment or equipment component in the task description. Eventually, for specialized tasks that are only performed on specific equipment, it may become necessary to include a component of the equipment in the task description. Keep the task description short and focused on the actual task. Obviously if the task description is short, it may not fully describe the job. This is where detailed instructions and pictures are used.

Next, determine what interval units are needed for your PM system. Calendar-based PMs usually will use a day interval. For example every 7 days Lubricate Roller Chain(s). Other tasks may be demand based or based upon the actual runtime of the equipment. In some cases, hours or minutes may be appropriate. As you gain experience with this set of PM tasks and intervals changes to the tasks and intervals may be warranted. Consequently choose a system that makes editing existing PMs simple and without historical data loss.

Ensure that Adequate Resources are in Place

Listed below are resources you need for a successful preventive maintenance program:

Trained and available personnel.
Adequate spares, expendables, lubricants, drive chain, bearings, etc.
Time in the production or equipment runtime schedule to perform PMs.
A motivated team of maintenance professionals.

Personnel must be trained and capable of safely performing the required work. Vigorously enforce proper lockout/tagout procedures. Stock on hand for expendables and other spares used for PMs has to be adequate. Inadequate spares not only prevents completion of the PMs, but also hurts motivation when personnel attempting to perform their job are hindered by a lack of spares. As such, the purchasing department has to have an ordering system that stays ahead of preventive maintenance spares requirements. Additionally an accountability system (CMMS) helps track spares use for restocking purposes. In summary, show your maintenance technicians how important you believe preventive maintenance is by providing the materials and training needed for these important tasks.

Time is a resource. Time must be available so that personnel can perform their work. This may require scheduling changes so that maintenance personnel are available during scheduled equipment downtime. Given the right resources, your maintenance team cannot help but be motivated to succeed with equipment maintenance.

Use a Maintenance Software Solution to Track and Manage Maintenance

Now that the tasks, intervals, personnel, training and scheduling are established it is time to load the data into a preventive maintenance software system. With so many CMMS choices, it is important to do your research carefully. Approximately fifty CMMS companies go out of business annually and fifty more replace these. Choose a well-established long-term CMMS company that has a proven record of accomplishment. Ask the following questions when choosing a CMMS:

How long has the CMMS company been in business?
How flexible is the preventive maintenance system?
Are there different task list formats available?
Is it possible to automate task list issuance?
Do technicians have the ability to close their own PMs while maintaining the integrity of the data?
Is it possible to close PMs without leaving the plant floor?
How easy (or hard) is it to adjust preventive maintenance task schedules?
Are labor and parts costs easily summarized and reported?
Is there an objective way to know how to optimize task lists or task intervals based upon downtime or reliability data?

When evaluating a CMMS it is best to run a demonstration copy of the proposed system with your own sample equipment and tasks. Use the system for at least 30 days. Issue preventive maintenance task lists to your personnel. Get their buy-in by demonstrating the usefulness of the system. Prove to yourself and your maintenance technicians that using the software makes both of your jobs easier. Most importantly confirm that this system has the potential to improve equipment availability and reliability.

Consider support and training as part of the initial investment. CMMS software training is well worth the investment as it brings the maintenance department up to speed quickly with the CMMS and instills confidence in its use. This leads to better compliance in entering and updating data.

Price is important, however the real cost benefit of CMMS comes not from the initial investment in CMMS but in the ongoing use and benefits derived from that use. Some CMMS software solutions are subscription-based. Others are a one-time investment with a perpetual license. While there are several factors to consider in CMMS selection, initial investment (price) should be a low priority when the budget allows. Ask yourself this question: “Do you want to trust millions of dollars in equipment assets to a cheap CMMS?”

2. Implement Your New Preventive Maintenance Program

Now it is time to start reaping the benefits of your new preventive maintenance program. Here are a few questions to consider when implementing your new PM program:

Should tasks lists be printed, emailed or simply viewed through a tablet or smart-phone?
How are tasks closed and what data should be included?
Who should close the preventive maintenance tasks as they are completed?
What will you use the system when maintenance personnel are absent?
Should spare parts lists be included on the task list?
If spares are included on the task list, should stock levels automatically draw down when the PM is completed?

The answers to these question come down to company policy, industry requirements, regulations and personal preference.

3. Assess and Adjust Your Equipment Maintenance Program

Constantly assessing your preventive maintenance program is an integral part of managing this system effectively. Equipment runtime schedules change, equipment demand changes, personnel change, maintenance technologies and procedures change. Your primary assessment tool is equipment maintenance data. The longer you use your CMMS system the more data it accumulates. Assuming that you chose a CMMS that provides extensive analysis and reporting, this data is now a valuable decision-making store. Use this data for OEE (overall equipment effectiveness) and reliability analysis. Choose a CMMS that uses MTBF (mean time between failures) to suggest preventive maintenance task intervals. Using real runtime data to set PM task intervals eliminates guesswork.

Being a proactive maintenance manager you should be adjusting to these changes as needed. Here are some things to look out for and some ideas on how to react. Keep in mind that sometimes there is no substitute for an experienced maintenance manager’s intuition.

Equipment Runtime Schedule Changes

In some situations, preventive maintenance can only be performed while equipment is in a scheduled shut down period. This creates a problem for maintenance scheduling. Here are some ways to manage this situation.

Non-maintenance machine operators can complete some simple maintenance procedures such as minor lubrication tasks.
Double-team certain equipment when it is down.
Adjust maintenance schedules.
Use automated maintenance devices, such as lubricators.
Implement preventive maintenance procedures during unscheduled downtime.

Equipment Demand Changes

Equipment demand relates to more than just runtime schedule changes. Demand reflects the actual time equipment is running and how much work it performs during the scheduled period. Obviously triggering PMs based upon calendar days would not be appropriate in these cases. It is best to trigger PMs in this case based upon runtime hours, cycles, cuts or whatever the appropriate meter unit is for that equipment. Consequently this equipment should have a counting device or be connected to the system that automatically triggers preventive maintenance work orders through an OPC compliant data connection.

Select a CMMS software solution that reads OPC data directly from the equipment then automatically responds with a preventive maintenance work order at exactly the right moment.

Personnel Changes

The best way to overcome this inevitable change is to have detailed listings of preventive maintenance tasks, intervals, spares requirements and history. Make sure this information is available to pass on to the new person. The more organized your system is the easier is to move seamlessly through this change. Once again, a good preventive maintenance software solution addresses this need.

Additionally, ongoing training and cross training in various maintenance processes can offset personnel change issues.

Changes in Maintenance Technologies and Procedures

An example of this type of change could be a new sensor that provides critical maintenance data to an OPC server. This data in turn indicates the correct PM interval. Another example could simply be running the equipment only when needed. This action saves energy resources and may reduce wear and tear on the equipment.

Software is constantly improving. Desired options with preventive maintenance software solutions are as follows:

Is there a role-based permission capability that allows the maintenance technicians to close their own PMs?
Is there a mechanism to validate PMs closed by technicians?
Does the ability to temporarily assign tasks to an alternate maintenance technician exist?
Is it possible to gather runtime data through an OPC compliant data network and issue work orders automatically.

Summary

Preventive maintenance is the one of the primary responsibilities of the maintenance manager in a manufacturing environment. Many maintenance department activities are affected by, and rely on a successful preventive maintenance program. More importantly, success of the manufacturing facility as a whole is directly proportional to the quality of the design, implementation and management of the preventive maintenance system.

3 Basic Types of Electrical Connectors

May 30, 2018

industry

Comments Off on 3 Basic Types of Electrical Connectors


Any electrical equipment will have different types of electrical connectors within. Each connector comes in different shapes, sizes, and materials. Function is another key factor that classifies the connectors.

From connecting a wire to a board to joining key elements on a PCB, connectors play diverse roles and serve many applications. Despite their simple design, they connect and bring power/signals to the system. Key factors that determine the quality of a good connector is its reliability, signal integrity, speed performance, power rating durability, and ease of assembly.

Connector manufacturers offer an extensive array of tried and tested product solutions.

There a few common connectors which are worth the mention:

8P8C Connector

8P8C connector, where 8P8C stands for “eight positions, eight conductors” have eight positions, with corresponding conductors in the mating socket assigned to each. It is basically a modular connector and was primarily used in telephone wire applications. Today, they serve many applications and functions like being used to interface Ethernet jacks.

The 8P8C connectors have a male plug and a corresponding female socket connection. It carries eight contacts and when they get aligned with the corresponding eight conductors within the sockets, electrical signals get transmitted. Apart from Ethernet and telephone wires, they are also used in computer applications and other communication cables.

Generally, most modular connectors are technically named after the number of positions and conductors. They include sizes like -4-,-6-, 8-, and -10-. For instance, a 10P8C will have ten positions with eight conductors.

D-Subminiature Connectors

D-subminiature is much similar to 8P8C, as they are used in computer and play a critical function on modems. Though the name states “subminiature”, these are larger than most modern computer connectors. The connector has a D-shaped metal component that defines its shape and protects it. It also consists of two or more rows of pins with varying numbers in the male connector and a similar set of receiving ends in the female part. The male connector with a pin is called a plug whereas the receiving part that houses the contacts that connect these pins is called a socket. This connection is established to transmit electrical signals. This variant has the capability to provide protection against electromagnetic interference, commonly known as EMI.

USB Connectors

USB or Universal Serial Bus is a very common type of connector. They are small interfaces used to attach multiple devices to a computer. You can see at least two USB ports in any standard laptop that support external USB connectors and cables, while desktops have up to 4 USB ports in general. USB connectors gained much popularity and recognition, as it can be connected and disconnected easily while the device is still working. This contributed to its widespread use in computer applications that constantly require plugging and unplugging external devices, especially for transferring data.

Industrial Processes And Emerging Technologies

May 30, 2018

industry

Comments Off on Industrial Processes And Emerging Technologies


Technology has been playing an incredible role in transforming the way industrial processes are performed. Whether it is a machine-to-machine communication or augmented reality, technology has been helping industries in every possible way to streamline and automate their work. Emerging technologies, like 3D printing, robots, algorithms, etc., have the power to completely transform the existing manufacturing processes. Or, in other words, modern technology has the potential to make our lives better. A rapid increase in the level of sophistication in technology has a strong impact on the workforce.

Robotics

Robots are being increasingly used to perform all sorts of industrial tasks. The developed parts of the world have witnessed a sharp rise in the demand for automated machines and equipment. Approximately, there are more than 2 million robots in use and the number is expected to rise quickly in coming years. Japan is leading the list of countries with the most number of robots. Recent years have witnessed a major decrease in the costs of automation and robotics.

Additive manufacturing

Additive manufacturing or 3D printing is an emerging technology that enables industries to manufacture three-dimensional objects. It is a process of building complex products by adding ultrathin layers of materials one by one. Currently, only selected items are being created out of a single material, for instance, medical implants and plastic prototypes. Comparing 3D industrial technology with that of traditional, additive manufacturing enables industries to manufacture new shapes without worrying about manufacturing limitations.

Autonomous technology

Autonomous technology, such as unmanned cars, is stretching the possibility of producing highly sophisticated industrial machines capable of performing the unthinkable. It has a great potential in making industrial processes seamlessly smooth with hardly any human intervention. Autonomous robots have already been deployed by a number of industries worldwide to perform quality control and inspection related tasks.

Augmented reality

Augmented reality is about the augmentation of the elements of physical world. By using handheld sensors, people can simulate various situations or, in other words, augmented reality enables us to create an illusion of reality. This technology can help engineers build incredible industrial solutions. One of the practical applications of this technology is the training of military recruits where they are tested with various virtual situations.

Conclusively speaking, new technologies are enabling engineers to develop intelligent machines that can perform multiple industrial tasks with great precision and speed. Companies need to invest in automation technology in order to maintain competitiveness and meet growing demand for innovation and modernity.

Carbon Fiber (CFRP) Trimming and Cutting for the Manufacturing Industry

May 30, 2018

industry

Comments Off on Carbon Fiber (CFRP) Trimming and Cutting for the Manufacturing Industry


What is CFRP?

CFRP (Carbon Fiber Reinforced Plastic) is an advanced light weight composite material made up of carbon fiber and thermosetting resins.

Machining Carbon Fiber for Post Processing

Machining carbon fiber – post processing is the final phase and once complete, the CFRP part is ready to be put into assembly. In post processing, carbon fiber trimming removes excess material if needed and cutting carbon fiber is used to machine part features into CFRP. Using a robotic waterjet or robotic router- unrivaled accuracy and speed using robotics for CFRP post process trimming, and laser software and router software technology can make all the difference.

Robotic carbon fiber trimming systems are easy to use, easy to maintain and easy to recover. Learning Path Control (LPC), and Learning Vibration Control (LVC) combined with Adaptive Process Control (APC) technologies supercharge the speed of the robotic trimming up to 60% beyond what is possible out of the box. Accufind and iRCalibration are technologies that use IR and CCD vision technology to keep pinpoint path accuracy while maintaining high speed cutting of the CFRP.

Waterjet, dry router and wet router technologies can all be suitable for carbon fiber trimming or cutting carbon fiber depending on the properties of the part and the production requirements. A variety of studies and tests are available to find the most optimal carbon fiber cutting solution for the specific CFRP part.

The Fiber in CFRP

CFRP starts as an acrylonitrile plastic powder which gets mixed with another plastic, like methyl acrylate or methyl methacrylate. Then, it is combined with a catalyst in a conventional suspension or solution polymerization reaction to form a polyacrylonitrile plastic.

The plastic is then spun into fibers using one of several different methods. In some methods, the plastic is mixed with certain chemicals and pumped through tiny jets into a chemical bath or quench chamber where the plastic coagulates and solidifies into fibers. This is similar to the process used to form polyacrylic textile fibers. In other methods, the plastic mixture is heated and pumped through tiny jets into a chamber where the solvents evaporate leaving a solid fiber. The spinning step is important because the internal atomic structure of the fiber is formed during this process.

Then the fibers are washed and stretched to the desired fiber diameter. The stretching helps align the molecules within the fiber and provide the basis for the formation of the tightly bonded carbon crystals after carbonization. Before the fibers can be carbonized they must be chemically altered to change their linear atomic bonding to more stable ladder bonding. To do this, the fibers need to be heated in air to around 380-600 F for an hour or so. This makes the fibers pick up oxygen molecules and rearrange the atomic bonding structure. Once this process is complete the fibers will be stabilized.

Once the fibers are stable, the carbonization process begins. The fibers are heated to 1800F to 5300F for a few minutes in a furnace filled with a gas mixture and no oxygen. A lack of oxygen prevents the fibers from catching fire at the high temperatures required for this step. The oxygen is kept out by an air seal where the fibers enter and exit the furnace and keeping the gas pressure inside the furnace higher than the outside air pressure. While the fibers are heated they start to lose their non-carbon atoms in the forms of gasses like water vapor, ammonia, hydrogen, carbon dioxide, nitrogen and carbon monoxide.

As the non-carbon atoms are removed, the remaining carbon atoms start to form tightly bonded carbon crystals that align parallel to the long side of the fiber. After this carbonization process is finished, the fibers will possess a surface that does not bond well. In order to give the fibers better bonding properties their surface needs to be oxidized, giving the fibers a rough texture and increasing their mechanical bonding ability.

Next is the sizing process. For this the fibers are coated with a material such as epoxy or urethane. This protects the fibers from damage in the winding and weaving phase. Once the fibers are coated they’re spun into cylinders called bobbins. The bobbins are then put in a machine that twists the fibers into yarns. Those yarns can then be used to weave a carbon fiber filament fabric.

Pre-Process

In the next step a lightweight, strong durable skin is created using a process called overlay. In this process carbon fiber fabric is laid over a mold and combined with resin to create its final shape. There are two methods that can be used to for the overlay process. The first is called “wet carbon fiber layup”. For this process a dry carbon fiber sheet is laid over the mold and wet resin is applied to it. The resin gives the carbon fiber stiffness and acts as a bonding agent. The second process is called “pre-preg carbon fiber lay up”. This process uses fiber that is impregnated with resign. Pre-preg lay up provides much more uniform resin thickness than the wet lay up method due to superior resin penetration in the carbon fiber. There’s also Resin Transfer Molding (RTM)- which takes place in the next step but combines the molding step and preform carbon fiber resin transfer step into one process; more on RTM below.

Molding CFRP

Now that the CFRP prepared for forming, it’s time to mold it into a permanent shape. There are variety of techniques that can be used for the molding process. The most popular is compression molding. Compression molding involves two metal dies mounted in a hydraulic molding press. The CFRP material is taken out of the lay up and placed into the molding press. The dies are then heated and closed on the CFRP and up to 2000psi of pressure is applied. Cycle time can vary depending on part size and thickness.

Recent breakthroughs such as BMW’s “wet compression molding” process have dramatically decreased compression mold cycle time. Resin transfer molding or “RTM” is another commonly used molding technique. Like compression molding, it features dies mounted in a press that close on the preform CFRP. Unlike compression molding, resin and catalyst are pumped into the closed mold during the molding process through injection ports in the die. Both the mold and resin may be heated during RTM depending on the specific application. RTM can be preferable to other molding methods because it reduces the steps to create CFRP by combining some of the tradition preform phase steps into the molding phase.

How To Choose The Very Best Water Treatment System For Your Plant

May 30, 2018

industry

Comments Off on How To Choose The Very Best Water Treatment System For Your Plant


For professional companies using raw water for their plant, some form of raw water treatment program is generally necessary to ensure a competent plant production approach and quality produced products. The very best raw water treatment program shall help avoid expensive plant downtime, costly maintenance fees, rather than having the ability to sell its products in the market, among other problematic situations.

But how do you pick the best water treatment system for your plant?

The answer to this relevant question can sometimes be a little complex and depends upon a variety of factors. We’ve simplified and divided what this may mean for your company below:

Quality: What is the quality of your raw water origin and do you know the status of the treated water?

Raw water screening and treatability study outcome: Exactly what are the variants of the feed water chemistry as time passes and how does indeed this affect the practice? Will the suggested treatment plans help you fix the problems you are having and meet with local discharge restrictions to your secondary wastes produced?

Plant lifespan: How long will you need to run the operational system? Working with your engineering company to investigate these types of key points can help steer you in the right direction when choosing the very best system for your plant.

The quality of the raw water in relation to the product quality requirements after treatment: One of many greatest factors which will regulate how to select your raw water system is the equipment that will get into the actual make-up of the system, which is often dependent on the quality of your raw water supplier in relation to the quality of water you need after treatment.

What is the quality of your water source? The first thing to understand when choosing the best water treatment system for your plant is normally what your water quality will be.

Sometimes it’s safer to treat your own water from floor or area sources or even to purchase it from a second source, for instance a municipality, but either way, it’s important to measure the quality you happen to be getting. In case the municipal water resource will probably give you low quality water and you must treat it further to make it beneficial within your facility, make certain you’re weighing these options. The contaminants present in the source water in relation to what your water quality needs are will affect the technology within the makeup of your system.

What is the quality of water you need? The second thing to comprehend when choosing the very best water treatment system for your plant may be the quality of water you will need for your company. Does it need to be:

– Pure for drinking?
– Ultrapure for microelectronics development?
– Not pure for domestic use such as for example flushing a product or toilet use?

Also remember that the water quality may be based on your industry. For example, many manufacturing facilities in industries such as power, chemical, petrochemical, and refineries, require huge volumes of water for boilers. Due to this, care must be used selecting the water treatment systems which will properly make the water intended for polishing treatment such as for example removing colloidal pollution from the water.

4 Trends CNC Manufacturing Will See in 2018

May 30, 2018

industry

Comments Off on 4 Trends CNC Manufacturing Will See in 2018


Numerical controlled (NC) machines have been in use since their invention in the 1940s and 1950s by John T. Parsons. The first computer numerical controlled (CNC) machine was born when John Runyon used computer controls to produce punch tapes, sharply reducing the time required from 8 hours to a mere 15 minutes. In 1957, the United States Air Force and Massachusetts Institute of Technology (MIT) collaborated on a project to produce the first NC machine controlled entirely by computer.

Fast forward more than 60 years later and the concept of CNC machining has very few differences compared to its predecessor. Though CNC machining and manufacturing still produces three-dimensional directions of output — X axis, depth and Y axis — the scope of the process reaches far beyond what anyone could ever imagine. In fact, 2018 is sure to bring new strides in this versatile technique including the following trends:

1. Complex Cuts Made Even Easier

Refinements in CNC machining will continue to make complex cuts — such as incline surface holes, contours and more — even more accurate and smooth. The project’s parameters are able to be defined in a number of different planes to generate the results that a customer expects within the timeframe needed.

2. Touchscreen Technology

Today, touchscreen technology is expected in smartphones and is increasingly becoming the norm for laptops and desktop computers too. These aren’t the only products taking advantage of this technology though. Touchscreens are integrated with CNC machines to deliver precise programming that is nimble, quick and intuitive. Built-in features are constantly updated and designed to shave precious time from programming parameters. These allow operators to deftly navigate through a range of content such as complex tables, long lists and expansive programs to find the elements that are required to complete projects.

3. Embrace New Materials, Tools and Processes

A dizzying array of new and innovative materials are developed every year, providing companies with new opportunities to deliver products that meet their target audiences’ needs. CNC machining provides processes and tools that meet the challenges of bringing these new materials to market. With the right features at the ready, CNC manufacturing tackles innovative projects with precision and speed.

4. The Trickle-Down Effect

Some industries, such as the aerospace and automobile sectors, require compliance with rigid tolerances, exceptional surface quality and the ability to endure dynamic loads. These same techniques can also be applied to the production of smaller scale items as well. The result is a workmanship and quality that is unsurpassed.

5 Challenges Facing the Industrial & Manufacturing Sector

May 30, 2018

industry

Comments Off on 5 Challenges Facing the Industrial & Manufacturing Sector


  • Changing Compliance Regulations & Traceability
  • Relevance
  • Skills Gap
  • Healthcare
  • Environment Concerns

The industrial and manufacturing sector keep evolving and that evolution doesn’t just happen. It’s almost always a direct result of overcoming the challenges that threaten the very existence of the sector. So, are there any challenges that the sector is dealing with currently?

Well, here are 5 challenges the manufacturing sector is currently trying to overcome.

Changing Compliance Regulations & Traceability

Changing regulations have always haunted manufacturers. But, they’re there for a good reason. Without compliance standards, manufacturers could very well end up cutting corners, which ultimately ends up affecting the end consumer.

So, for the sake of things such as quality control or proper waste management, compliance standards need to exist. However, complying with new standards isn’t an easy task for manufacturers. More often than not, they’re a burden and thanks to globalization, manufacturers are also forced to deal with regulations that are unique to each territory.

Manufacturers are also tasked with tracking compliance as well. This means that have to go through the entire supply chain to check for compliance, right from vendors to the end-product that’s sent to the customer.

Relevance

As technology evolves, the rate of innovation increases. But, this also means companies have to rush and that can lead to all kinds of temptations. The urge to skip a step or avoid certain tests can be hard to resist when the goal is to market the product as soon as possible.

But, the last thing a manufacturer needs is to put the business at risk with a low-quality product. So, innovation management becomes a must in these situations. Preferences change by the day and any delay in delivering appropriate solutions can mean the end of everything.

So, manufacturers have to establish a system that allows for the consistent delivery of new ideas and innovation. Only this can sustain manufacturing success.

Skills Gap

As one generation exits the workforce, it makes way for a new generation of workers. This transition is, in itself, quite a challenge. But, things are very different today.

Manufacturers face the challenge of filling up those positions with equally skilled members from the current generation. However, the new generation of employees is simply not skilled enough, making the challenge even harder to overcome. As a result, manufacturers have to develop strategies such as working with the education sector to offer the skills training necessary to fill these positions.

Some manufacturers are also retaining skill by extending the retirement age.

Healthcare

As healthcare costs go up, it becomes very difficult for manufacturers to manage their budgets. For instance, in the US, it’s manufacturers who foot healthcare bills for their employees. But, with costs going up, it is simply not feasible and there are no viable alternatives.

Environmental Concerns

Regulations with regard to sustainable and environmentally safe processes and practices put more strain on the manufacturing process. Whether it’s waste disposal or the regulation of materials, more resources are needed to follow best practices.

As you can see, it’s not exactly easy for the industrial and manufacturing sector. However, manufacturers have to figure out a way to leverage technology and innovative ideas to keep up with the changes that pose a threat to them.